

Paediatric Resuscitation and Maintenance Fluid Therapy

Tanya Ruder Division of Community Paediatrics University of the Witwatersrand

health

Department: Health REPUBLIC OF SOUTH AFRICA Standard Treatment Guidelines and Essential Medicines List for South Africa

PAEDIATRIC HOSPITAL LEVEL 2023 EDITION

Variations in intravenous fluid management for paediatric hypernatraemia in South Africa: A survey of junior and senior South African paediatric doctors

M Milovanovic, ¹MA Psych; **S Omar**, ² Cert Critical Care; **S G Lala**, ^{3,4*} PhD; **Z Dangor**, ^{3,4*} PhD

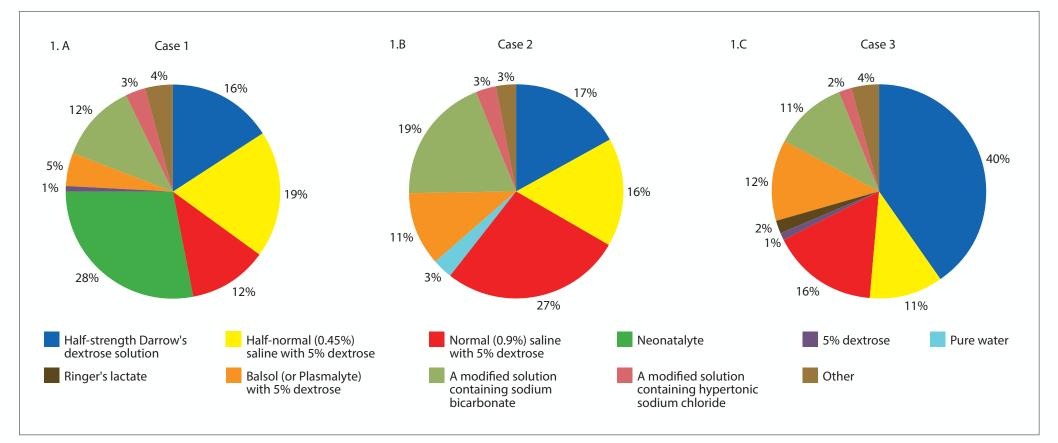


Fig. 1. Clinician-prescribed infusate for maintenance intravenous requirements in children for scenarios one (A), two (B), and three (C).

Consideration about dehydration

- Concern about fluid and electrolyte shifts
- Compensation mechanisms of the body
- Degree of dehydration is essential

Considerations about fluids

- Fluids are drugs
- Consider
 - Indication
 - Route of administration
 - Duration
 - Adverse effects

Primum non nocere

	Resus	citation	Maintenance					
	Modified Ringer's lactate	Sodium chloride, 0.9%	½ Darrows Dextrose, 5%	Sodium chloride, 0.9%/Dextrose, 5%	Paediatric Maintenance Solution	Balanced solution		
Na	130	154	61	154	35	130		
К	4		18		12	4		
Cl	109	154	51	154	47	110		
Bicarb			27			27		
Lactate	28							
Dextrose			50	50	50			
Osmolality	272	308	434	560	372	273		
Tonicity	Isotonic	Isotonic	Hypotonic	Hypertonic	Hypotonic	Isotonic		
рН	6,5		5			7,4		

Values expressed in mmol/L, except osmolality and pH

Resuscitation Fluids: Saline versus Ringers Lactate

- The previous edition of the Paediatric STGs and EML only recommended Sodium Chloride, 0.9% .
- The consideration of Modified Ringers Lactate was evaluated during the current review cycle.

A randomized trial comparing the effectiveness of Ringer lactate and normal saline for correction of paediatric acute severe diarrhoeal dehydration found that 38% of patients on Ringers lactate and 23% of patient on normal saline had improvement in clinical status and pH \geq 7.35 after 6 hours, RR =1.63, 95% CI 0.8 to 3.4). No significant differences were seen secondary outcomes regarding electrolyte, renal and blood gas parameters, or hospital stay duration.

Kartha GB, Rameshkumar R, Mahadevan S. Randomized Double-Blind Trial of Ringers Lactate versus Normal Saline in Pediatric Acute Severe Diarrheal Dehydration. JPGN, 2017, 65 (6):1.

Resuscitation Fluids: Saline versus Ringers Lactate

• Comparable in efficacy, the consider the costs:

Item	Price*
Sodium Chloride; 0.9%; Infusion (parenteral); 1 L	R12.37
Ringer Lactate; Infusion (parenteral); 1 L	R10.75

*January 2024

Note: Much large volume on National Contract for NaCl compared to Ringers Lactate. As volumes of Ringers increase, it would be expected this price to go down

Modified Ringers Lactate was thus added as an alternative resuscitation fluid to sodium chloride, 0.9% in a shock, anaphylaxis, cardiac arrest and burns.

Resuscitation fluids

Sodium Chloride, 0.9%

• Historical recommendation retained

Modified Ringers Lactate

• Alternative included

Maintenance fluids

Major change in fluid recommendations throughout

Previous recommendation

 ½ Darrow dextrose, 5%

Updated recommendation

• Saline, 0.9% with dextrose, 5%

Update in maintenance fluid recommendation for children

- Half-strength Darrow's solution has been used extensively for childhood dehydration in treatment internationally.
- Major adverse effect: iatrogenic hyponatraemia.

SYSTEMATIC REVIEW

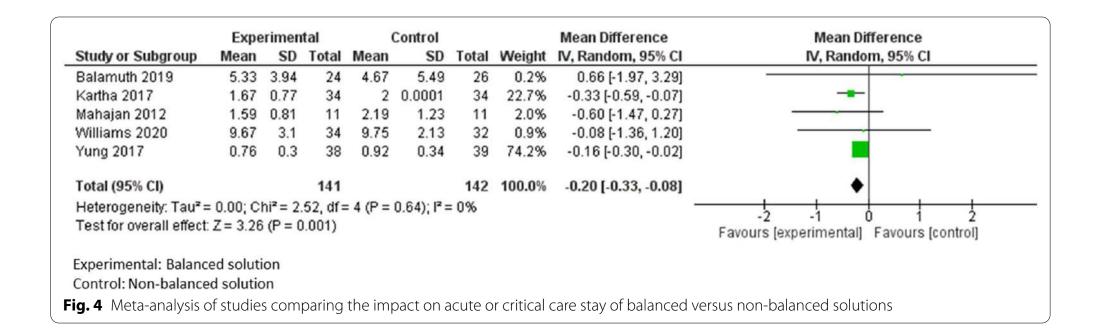
ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children— a systematic review and meta-analysis

Brosier, et al. ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children- a systematic review and metaanalysis. Intensive Care Med. 2022 Dec;48(12):1691-1708. doi: 10.1007/s00134-022-06882-z. Epub 2022 Oct 26..

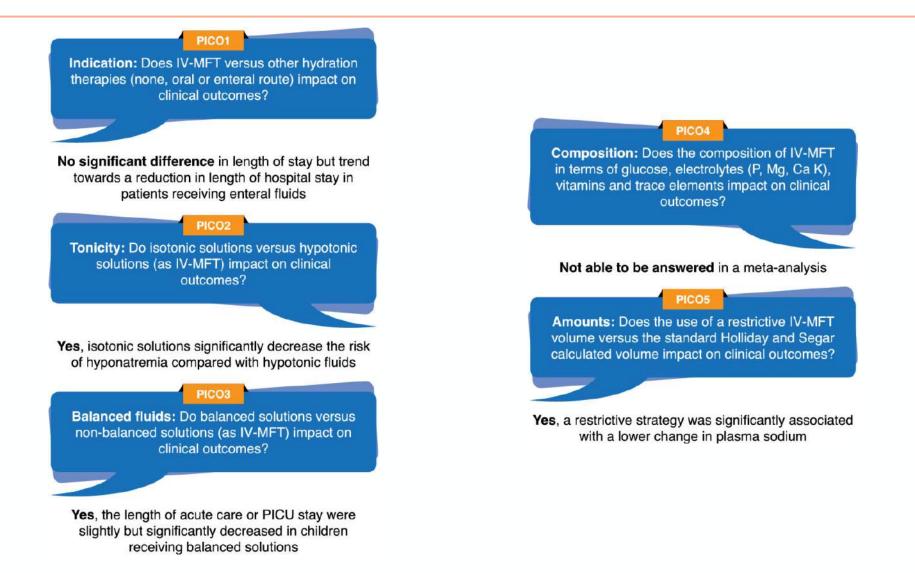
Five PICOs

Indications for IV maintenance fluid therapy (IV-MFT)

Use of isotonic fluids


Use of balanced solutions

IV-MFT composition


Volume of IV-MFT administered

	Isotonic so	lution	Hypotonic so	lution		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Almeida 2015	7	130	14	103	6.7%	0.36 [0.14, 0.93]	
Bagri 2019	3	75	6	75	3.7%	0.48 [0.12, 1.99]	
Castilla 2019	6	70	33	60	6.4%	0.08 [0.03, 0.20]	
Choong 2011	29	128	53	130	11.6%	0.43 [0.25, 0.73]	
Coulthard 2012	0	39	7	40	1.1%	0.06 [0.00, 1.03]	
Flores 2016	1	52	21	99	2.0%	0.07 [0.01, 0.56]	
Friedman 2015	0	47	2	45	1.0%	0.18 [0.01, 3.92]	
Kannan 2010	5	58	18	109	5.9%	0.48 [0.17, 1.36]	
Kumar 2020	5	84	12	84	5.5%	0.38 [0.13, 1.13]	
Lehtiranta 2020	7	308	11	306	6.6%	0.62 [0.24, 1.63]	
McNab 2014	12	319	35	322	9.7%	0.32 [0.16, 0.63]	
Montañana 2008	15	59	20	63	8.3%	0.73 [0.33, 1.62]	
Pemde 2015	5	31	36	61	5.6%	0.13 [0.05, 0.40]	<u> </u>
Ramanathan 2016	9	59	29	60	7.4%	0.19 [0.08, 0.46]	
Rey 2011	16	63	38	62	8.6%	0.22 [0.10, 0.46]	
Saba 2011	0	16	1	21	0.8%	0.41 [0.02, 10.85]	
Torres 2019	12	145	29	154	9.2%	0.39 [0.19, 0.80]	
Total (95% CI)		1683		1794	100.0%	0.31 [0.23, 0.42]	•
Total events	132		365				
Heterogeneity: Tau ² :	= 0.14; Chi ² =	25.02, d	f = 16 (P = 0.07); I ² = 38	1%		

Fig. 3 Meta-analysis of studies comparing the impact on hyponatremia occurrence of isotonic versus hypotonic solutions

Update in maintenance fluid recommendation for children

Brossier, et al. ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children- a systematic review and meta-analysis. Intensive Care Med. 2022 Dec;48(12):1691-1708. doi: 10.1007/s00134-022-06882-z. Epub 2022 Oct 26.

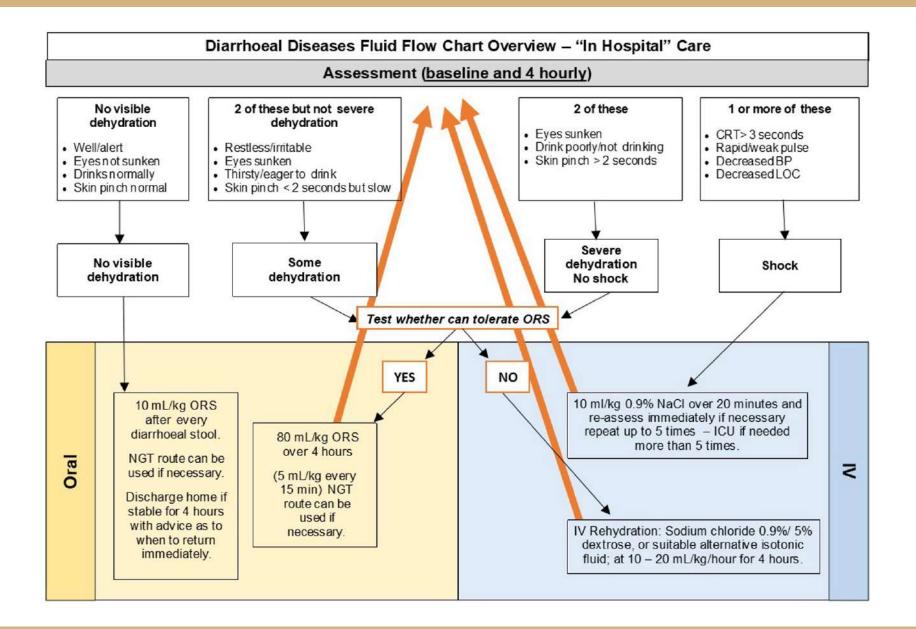
Update in maintenance fluid recommendation for children

Half strength Darrow with glucose 5% is the **more costly** option compared to saline 0.9%/dextrose 5% option

	Half Darrow With Glucose; 5%; Infusion (parenteral); 500 ml	Sodium Chloride, Dextrose; 0.9%, 5%; Infusion (parenteral); 1 L	Sodium Chloride, 0.9% Dextrose, 5%; Infusion (parenteral); 200 ml	
Current contract price*	R12.86	R12.37	R22.28	
Price per litre	R25.72	R12.37	R111,40	

*January 2024

Thus removed: replaced with Sodium Chloride 0.9%/Dextrose 5% solution


Balanced solutions..?

	5%; Infusion (parenteral);	· ·		Plasmalyte B (Balsol); 1 L
Current contract price*	R12.86	R12.37	R22.28	R21.58 [#]
Price per litre	R25.72	R12.37	R111,40	R21.58

*January 2024

Non-EML

Thus removed: replaced with Sodium Chloride 0.9%/Dextrose 5% solution

The Case for Oral Rehydration Therapy

The human body has strict physiologic control to maintain a balance of fluid and electrolytes.

The case for oral rehydration therapy

Physiology

- Antidiuretic hormone
- Renal regulation of urinary water losses
- Thirst centre to regulate intake

The case for oral rehydration therapy

Evidence

- · Equal efficacy
- · Fewer complications, e.g. phlebitis
- · Shorter duration of hospitalisation
- Lower cost
- · Easier to administer
- Quicker to treatment commencement

Also...

· Opportunity to empower the caregiver

IMCI

Most children should receive maintenance fluids orally or via nasogastric tube

All children receiving IV fluid should be re-assessed frequently (4 hourly)

For rehydration, the oral or nasogastric route is preferred

Rapid rehydration over 4 hours (vs slow rehydration) is preferred

Encourage normal nutrition

Be extremely cautious with IV fluid in SAM patients

Rehydration is additional to nutrition (not a replacement)

Zinc 10 mg daily for 14 days to all

Acknowledgements

- PERC & secretariate of Affordable Medicines Directorate
 - Dr Nilesh Lala
 - Dr Gary Reubenson
 - Dr Martie Wege